Steigungsdreieck: Unterschied zwischen den Versionen

Aus LernZeitRäume
Wechseln zu: Navigation, Suche
Zeile 24: Zeile 24:
  
 
{| class="mw-collapsible mw-collapsed wikitable"
 
{| class="mw-collapsible mw-collapsed wikitable"
! Das Steigungsdreieck
+
! Die Steigung und das Steigungsdreieck
 
|-  
 
|-  
| Das Steigungsdreieck ist ein rechtwinkliges Dreieck.  
+
| Die Steigung gibt an, um wie viel eine Funktion zu- oder abnimmt, wenn man x um 1 erhöht.
  
Es ist so angelegt, dass ein Punkt die Koordinaten (n|f(x)).  
+
Um diese im Graphen anzuzeigen kann man ein Steigungsdreieck einzeichnen.  
  
Ein zweiter Punkt liegt um 1 nach rechts verschoben auf der Funktion und hat die Koordinaten (n+1|f(n+1)).  
+
Dazu wählt man einen beliebigen Punkt, zeichnet eine Strecke ein die um 1 x nach rechts geht.  
  
Die Strecke dieser beiden Punkte bildet die Hypotenuse.  
+
Anschließend eine Strecke nach oben zum Funktionsgraphen. Die Länge dieser Strecke zeigt an um wie viel sich y ändert, wenn man x um 1 erhöht.
 
+
Anschließend wird ein rechtwinkliges Dreieck konstruiert, dessen Katheten parallel zu x-Achse und y-Achse verlaufen.
+
 
+
Durch die Länge der zur y-Achse parallel verlaufenden Kathete, kann die Steigung abgelesen werden.
+
 
+
|}
+
 
+
{| class="mw-collapsible mw-collapsed wikitable"
+
! Die Steigung
+
|-
+
| Die Steigung gibt an, um welchen Betrag sich die Funktion verändert,
+
 
+
wenn sich der Eingabewert um 1 verändert.
+
  
 +
Sie gibt also die Steigung an.
 
|}
 
|}
  
 
<ggb_applet height="600" width="570"
 
<ggb_applet height="600" width="570"
 
filename="Steigungsdreieck.ggb" />
 
filename="Steigungsdreieck.ggb" />

Version vom 16. November 2015, 12:36 Uhr

Unten ist eine Funktion mit der Funktionsgleichung y = 2*x dargestellt.

Außerdem ist in der Grafik das Steigungsdreieck eingezeichnet. Es kann mit dem Schieberegler verschoben werden.

Ordne folgende Teile der Funktionsgleichung der Grafik zu: "y"; "2"; "x"

Tipp: für 2 der drei Elemente gehören jeweils in eines der Kästchen!

Funktionsgleichung allgemein
Funktionsgleichungen stellt man in der Mathematik häufig wie folgt dar:
y = ax + c

Diese kann man mit bisher folgender bekannter Gleichung vergleichen:

Preis(Minuten) = Minutenpreis*Minuten + Grundgebühr
y entspricht dem Preis
a entspricht dem Minutenpreis
x entspricht den Minuten
Die Steigung und das Steigungsdreieck
Die Steigung gibt an, um wie viel eine Funktion zu- oder abnimmt, wenn man x um 1 erhöht.

Um diese im Graphen anzuzeigen kann man ein Steigungsdreieck einzeichnen.

Dazu wählt man einen beliebigen Punkt, zeichnet eine Strecke ein die um 1 x nach rechts geht.

Anschließend eine Strecke nach oben zum Funktionsgraphen. Die Länge dieser Strecke zeigt an um wie viel sich y ändert, wenn man x um 1 erhöht.

Sie gibt also die Steigung an.